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RUNGE-KUTTA METHODS APPLIED TO FULLY IMPLICIT 
DIFFERENTIAL-ALGEBRAIC EQUATIONS OF INDEX 1 

ANNE KVAERN0 

ABSTRACT. In this paper we study the order of Runge-Kutta methods applied to 
differential-algebraic equations of index one. We derive general order conditions 
for the local order kL , and give a convergence result, which shows that the order 
kG of the global error satisfies kG > kL - 1 . We also describe some numerical 
experiments, which are in agreement with our results. 

1. INTRODUCTION 

A general differential-algebraic equation (DAE) has the form 

(1.1) F(v, v', x) = O 

with initial values 
v(x0) = Vo, v (x0) = VO, 

where v: R -Rmr and F: Rm- 1 x Rmr 1 x R Rm- 1 is a function for which 
we assume sufficient differentiability. We also assume aF/Ov' to be singular 
with constant rank, (1.1) to be of index 1 over the whole interval of integration 
[x0, Xend], and the initial values to be consistent, i.e., 

F(vo, v', x0) = 0. 

The index of a DAE is the number of times the algebraic part of the system has 
to be differentiated to obtain an ODE. The index 1 system (1.1) is supposed 
to be solvable in the sense that for each set of consistent initial values there 
exists a unique solution of the system. For more precise definitions of index 
and solvability, see [8]. 

According to Petzold [13], an s-stage Runge-Kutta method applied to (1.1) 
is defined by 

(1.2) F vn +hEai V V ,xn +cih =0 i = 1, ...,s 

j=l 

(1.3) Vn+ Vn+ h E biVi , 
i=1 
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and the stage vectors V are given by 
S 

(1.4) J/=v +hEa JVj, i=1,...,s. 
j=l 

An s-stage Runge-Kutta method is described by its Butcher tableau 

c1 all a12 ... al 
C2 a21 a22 ... a2 

cs asI as2 a ass 

b1 b2 ..b5 

or by 
cv 

bT 

where c1 = ES. a11 1i 1... s. The matrix v has to be nonsingular, and 
we define 

0 = (dij) =S 1. 

The local truncation error is given by 

dn+i = n+1 - v(xn + h) 

where ?n+I is the solution of (1.3) when vn = v (xn). The local order of the 
method is kL if 

dn+l =&(h ) 

The global error is defined by 

en= vn- v(Xn)' 

and the order of the method is kG if 

en = &(h G). 

The stability constant r is given by 

T~~~~~ r = 1 -b v 5 

where e5=[1,.. , 11T e Rs. 
Recently, the behavior of Runge-Kutta methods applied to differential-alge- 

braic problems has received considerable attention. In [13], Petzold derived a 
complete set of order conditions for linear constant-coefficient index-l equa- 
tions, assuming that Irl < 1. Under the same assumption, she also derived 
a sufficient set of order conditions for nonlinear problems (1.1) linear in v'. 
Later, Burrage and Petzold [2] extended these results to also include the classes 
of methods with IrI = 1. Kvaern0 [9] derived a complete set of order condi- 
tions for the local truncation error for this class of problems by comparing the 
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Taylor expansion of the exact and numerical solution of the equation. Roche 
[14, 15] derived general order conditions for Runge-Kutta methods applied to 
semiexplicit index-l problems, using the theory of Butcher series and rooted 
trees. Very recently, this theory has been extended to the Hessenberg form 
index-2 DAE's by Hairer et al. [7]. 

The DAE (1.1) can (at least in theory) be transformed to an autonomous, 
partitioned system, by using the following arguments. The system can be written 
as an autonomous system with no loss of generality. This is done by adding the 
differential equation 

Vt = 1, (X0)=X0 

with the solution vm (x) = x, to the system. We then have 

(1.5) F(v,v')=O 

with v: R -* Rm and F: Rm xRm -x Rm . Equation (1.5) can be split into a dif- 
ferential and an algebraic part. Gear [6] uses the following argument: Suppose 
that 

rank Fv, = r < m. 

Then there exists a nonsingular r x r submatrix of Fv, Suppose that the 
equations have been numbered so that rank af/Ov' = r over the whole interval 
of integration, where f represents the first r equations in F. Let g be the 
last m - r equations in F. Suppose that the variables are numbered such that 

af _ Oaf f 
av, a~v, av21 

where v = [vT, VT]T, v1 e Rr, v2 E Rm-r, and af/Ov' is nonsingular. 
Then, by the implicit function theorem, f = 0 can be solved for v', that is, 

vI= Hi (v1, v2, v2) . This can be substituted into the last m - r equations to get 
an implicit relationship between v1 and v2. The vector v' cannot be involved, 
or we would be able to solve (1.5) for additional components of V', contrary 
to the assumption about the rank of Fv, Thus, (1.5) can be written as 

(1.6) f(v, v') = 0. 
g(v) = 0. 

The system (1.6) has index 1 if and only if 

LgV 

is nonsingular. In this paper, we are only concerned with solvable index-l 
DAE's of the form (1.6). However, the results obtained are valid also for the 
more general form (1.1), as long as the rank of aF/Dv' is constant over the 
whole interval of integration. 

We have used a model equation for the derivation of the local order condi- 
tions. 
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Theorem 1.1. The set of order conditions derived for the model equation 

(y, z')=0, Z=g(y) 
is equivalent to the set of order conditions for the fully implicit problem (1.6). 
Proof. The fully implicit index-i DAE is given by (1.6). By the definition of 
the index, we know that 

is nonsingular. Then, rankgv = m - r, and there exists a nonsingular 
(m - r) x (m - r) submatrix of gv . Suppose that the variables are now numbered 
such that gv can be written as 

[agog] 
Tay az 

where v = [y , zTT , and gz is nonsingular. Then g can be solved for z, 
and (1.6) can be written as 

f(y, zy',' z') =O, z= k(y) 
or, by inserting the expression for z into the differential equation, as 

(1.7) f2(Y 5 Y.5 Z ) = O. 5 g (y) 
The numerical solution defined by (1.2) and (1.3), applied to (1.6), is given by 

(1.8) f(J'>J$)=0, g(J') =. 

The equation (1.8) is the same as (1.6) with v replaced by Ji and v' by Vi'. 
Using the same arguments as above, (1.8) can be written as 

(1.9) f2(Yi Y 1 Zi) = 0, Z i = (Yi), 

where Vi = [Yi, Z1 ] . Note that the choice of y and z so that gz is 
nonsingular is not necessarily unique, neither will g, necessarily be constant 
over the whole interval of integration. But, at least in some neighborhood of the 
solution at xn,, gz will be nonsingular, and we assume h to be small enough 
to keep gz nonsingular over the whole step. For the first step, (1.4) and (1.3) 
can be written as 

S S 

(1.1I0) Yi =yn+hEfa Y, Zi=Zn +hEaiZJ i = 1 ..., S. 

j=l j=1 

and 
S S 

(1.11) Yn+ 1 = Yn +h ii ' Zn+I = zn + bi~ 
i=1 i=I 

By using (1.10) together with the algebraic part of (1.9) we have 

Zn + h E aijZ n + h E aijYi) 
j=1 * I 
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or, by solving for Z' and using the Taylor expansion around (yn , zn), 

iZ' E Zd ( (Yfn+hEalkk) -n 

=y 1Y + 2 E dijajkajl, yy(Yk Y1) +* m 
j ,k ,1=1 

Inserting this into the differential part of (1.9), we obtain 

h sA 

f2 (Yi 1Yi' 5 Z.i) 
= 2 tY 1 5Yi n uy 2 1: i~i kajlkyy(ykSY 

jkz,=1 

The term Z' involves g Y' so the term Y ' in (1.9) will give no additional 
order conditions. We then have that the equation 

P Yi, Z i) =0 ? Zi = k(Yd , i = 1 , ..., s 

together with (1.11) and (1.10), will give all the necessary order conditions. o 

In ?2.1 we develop a general scheme for the Taylor expansion of the exact 
solution of the model equation. In ?2.2 we give a complete set of order condi- 
tions for the local truncation error when a Runge-Kutta method is applied to 
the model equation. These order conditions take on a simple form, with the 
help of the "tree model" derived in ?2.1. Convergence results are given in ?3, 
while numerical experiments are described in ?4. 

2. THE ORDER OF THE LOCAL TRUNCATION ERROR 

The aim of this section is to derive a set of necessary and sufficient order 
conditions for the local truncation error. In ?2.1, we expand the solution of 
the model equation into a Taylor series. This series is expressed in terms of 
rooted trees. In ?2.2, we derive the Taylor expansion of the numerical solution 
of the model equation. The coefficients of the Taylor series are obtained directly 
from the trees derived in ?2.1. By comparing the Taylor series of the exact and 
numerical solution, the order conditions are obtained. The main result in this 
section is given in Theorem 2.2. 

Some of the trees derived in ?2.1 will correspond to identical order conditions. 
In ?2.3, a reduced set of trees is introduced, so that each of the order conditions 
is given by one, and only one, tree. In Figure 2, all the order conditions up to 
order 4 are exhibited, together with their related trees. 

2.1. Taylor expansion of the exact solution of a model equation. Consider the 
index-I equation 

(2.1) f(y, Z') = 0, Z = g(y) 

with consistent initial values y(xo) = yo and z(xo) = zo, where y: R -* Rr, 

z: R -* Rmr f: Rr x Rm -* Rr, and g: Rr -* Rmr. The functions f and 



588 ANNE KVAERN0 

g are assumed to be sufficiently differentiable. Repeated differentiation of the 
algebraic part of (2.1) yields 

I I 
z = g1y, 

z"= gY ( b/ g Y/ 

(2.2) 

z" =yyy/ / ' Y b/ + g y(y" BY/) + gY(ye MY/ + g MY/ 

These expressions can be written in terms of trees as follows: 

2 

1 

4 4 3 

2 >4 2K 3 2? 3 4? 2 $2 

1 1 1 1 1 

By inserting z' from (2.2) into the differential part of (2.1) we have 

(2.3) f (, gyy') = 0. 

Since (2.1) is an index 1 equation, (2.3) can be solved for y', and f g is 
nonsingular. Repeated differentiation of the differential part of (2.1) gives 

?y' + fzlz =0, 

fyy(y y') +f y', z") + fYy +fz,(z", yt) + fZzz(z", z ) +fz, = 0, 

By replacing the highest derivative of z with the expression given in (2.2), we 
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find 
I I 

y =y 

Y (f g) 1(fg, (y, y') + 

(2.4) (fz +y Vz' gyyy (Y" , Y ) + fz' gYY (Y , A I" = ~ ~ f(yyI+y') 
/ 

+ Y Y ) + f(y , 

z") + f y + fz1(z", y ) + fzz(z z)), 

These expressions can also be written in terms of trees: 

0 

2Y3 
0 

4 4 3 

2{4 2$3 2q3 4 2 

o 0 0 0 

1 2 1 o 2 51 1 2 1 p2 

o 0 0 0 0 

These graphs motivate us to introduce a set of special monotonically labelled 
trees, ts, given by the following definitions. 

Definition 2.1. The set of special trees, SDA1T, is the set of directed graphs, 
consisting of light and heavy vertices, with one single root, such that: 

(1) ts E SDAITYY if the root is light, only the root has ramifications, and 
each of the branches consist of only light, or only heavy vertices. If the 
root has no ramification, then the tree consists of only light vertices. 

(2) ts E SDA TYZ if the root is light without ramifications, but followed 
by a heavy vertex. The heavy vertex has at least two branches with no 
ramifications, and the branches all consist of onty light vertices. 
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(3) ts E SDA 1 TZ if the root is heavy, only the root has ramifications, and 
the branches consist of only light vertices. 

(4) SDA 1 Ty = SDA 1 TYY u SDA 1 Tyz. 
(5) SDA1T = SDAITY U SDA1TZ. 

Let w(ts) be the number of vertices in a tree. 

Definition 2.2. Let ts E SDA1T. We say that ts is monotonically labelled if 
every vertex is associated with an integer i satisfying 

0 < i < cw(ts)- 1 if ts E SDAITY, 

I < i < c()ts) if ts E SDA ITz 5 

and if, following each branch of ts, the labels are monotonically increasing. 

Definition 2.3. SLDAITYY, SLDA1TYz, and SLDA1Tz are the sets of mono- 
tonically labelled trees satisfying conditions (1)-(3), respectively, in Definition 
2.1, and 

SLDA1T = SLDA1TYY u SLDA1TYZ, 

SLDA1T =SLDAITy U SLDAITz . 

The set of trees, SLDA 1T, corresponds to the SLDAT-trees defined by Roche 
[141. The differences between the two sets of trees derives from the fact that 
the trees of Roche are constructed for a semiexplicit index 1 equation, while 
the trees used in this paper are constructed for the model equation (2.1). Also, 
in the rest of this paper, we will use similar notations as used by Roche. To 
distinguish between the two kind of trees, we use the notation DA1T-trees in 
place of the DAT-trees used by Roche. 

Let Wom (ts) be the number of light vertices, and let cof (ts) be the number of 
heavy vertices in ts E SLDAIT. 

Definition 2.4. The order p(ts) of a tree ts E SLDA1T is defined by 

(1) p(ts) = W()m(ts) + (of(ts) if ts e SLDA1TYy, 
(2) p(ts) = c(m(ts) - 1 if ts e SLDA1Tyz, 
(3) p(ts) = com(ts) if ts e SLDA1Tz. 

Then tS is the tree representation for one of the terms in y(p(ts)) if tS e 

SLDA1TY, and one of the terms in Z(P(ts)) if tS E SLDATZ . Let 

Ty = Tz = 

Definition 2.5. For every tree ts E SDAITY we define a function Fs (ts): Rr x 

Rm - Rr, and for every tree u e SDAIT, we define a function Gs(us): Rr x 
Rm-r Rm-r by 

(1) F5(TYr)(Y, z)y and G5(T g - z 
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(2) F (t)(y, z) = y(Pk) z(ql) z(q)) if t E 

SDA1TYY, 

(3) Fs(ts)(y, z) = fz, gy) l z,9ky(Y(pi) ... y(Pk)) if tsE SDA1TYZ, 
(4) G(us)(y, z) = g (y(Pi) ... y(Pk)) if us e SDA1TZ, 

where the tree ts or us has k light branches with respectively P1, ... k 
vertices, and 1 heavy branches with respectively q1 - 1, ..., q1 - 1 vertices. 

Example 2.1. The tree 

corresponds to (-fg) y', z"). 
There is a one-to-one correspondence between the trees ts E SLDAITY, 

p(ts) = p, and the terms of y(P), and between the trees us E SLDA1TZ, 

p(us) = p, and the terms in z(P). The following arguments will show this. 
The trees corresponding to the terms in y', y", y"', z', z", and z"' are already 
given. Suppose that all the trees corresponding to y', ..., y(P) and z', ... , z(P) 

are given. Let us E SLDA1TZ, with p(ts) = p. Attach a light vertex once to 
each of the terminal vertices of the tree, and once to the root. Associate with 
the new vertex the number w (us) + 1. Do this with all the trees us E SLDA1Tz, 

p(us) = p. Now we have the set of trees corresponding to z(p+'). To find the 
trees corresponding to y(P+ 1), we first have to differentiate f o) Let T be the 

p 
monotonically labelled tree with a light root followed by one single branch with 
p heavy vertices. This tree corresponds to the term (-fzig 1fzI/(P) . The 

derivative f(P) is composed of terms obtained by premultiplying the deriva- 
tives corresponding to the trees ts E SLDA TYY U Tp of order p(ts) = p with 

(-fz, gy) . To find the trees corresponding to ( , g attach a light 
vertex once to each terminal light vertex and once to the root. This corresponds 
to differentiation of (-fzgy) 1f(P) with respect to y. Then attach a heavy 
vertex once to each heavy terminal vertex, and once to the root. This corre- 
sponds to differentiating (-fzg,) p with respect to z' . Associate with the 
new vertex the integer w(ts) + 1. We now have all the trees in SLDA1TYY 
with p(ts) = p + 1 , and the tree T1> corresponding to (-fzgy) Iz Z(P+I) 

Replace the heavy branch in T1> with the trees corresponding to z(p+1) . This 
will give the trees t E SLDA1T YZ 1 with p(ts) = p + 1 . The tree Up+, 
consists of a light root followed by one branch with one heavy vertex, followed 
by p+ 1 light vertices. This tree corresponds to yjp+ 1) , for which the equation 
(-f ,g -)If(P+l) = 0 is solved. 
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The number of ways to label a tree ts E SDA 1T is the number of times the 
corresponding derivative appears in the Taylor expansion of the exact solution. 
We call this number fi(ts). We can now state the following lemma. 

Lemma 2.1. For the exact solution of (2.1) we have 

y(P)= E Fs(ts) = 5 fl(ts)Fs(ts), 
tsESLDAITV tsESDAITV 

P(tS )=P P(tS )=P 

z = E Gs(us)= 5 (us)Gs(us). 
uSESLDA1T uSESDA1T 

p(us)=p p(u )=p 

We now know how to express y(P) and ?) in terms of partial derivatives 
of f and g, and of lower derivatives of y and z. What we want is to express 
y(P) and ?) in terms of partial derivatives of f and g, and of y' . Such an 
expression is already given for y" in (2.4). By inserting this into the expression 
for z" in (2.2) we obtain 

Z g (y, y') + g (-f gy )f Y + g (-f, g) Yfz' gy , y') 

The expressions for y" and z" can be inserted into the expression for y"', 
and then for z"', etc. We now find a new set of trees corresponding to these 
expressions. This set is defined as follows. 

Definition 2.6. We denote by DAlT, DAlTy, and DA1Tz the set of trees 
defined recursively by 

1. T y eDAITY and TZ eDA1Tzy. 
2. (a) If tl, ...,tk E DAlTy and k > 1, then [tl, ...,tk]z E DAlTZZ. 

(b) If t1, *, tk E DAlTY, U1, ..., u1 E DA1Tz\{Tz}, k > O or 
k = 0, and I > 1, then [t1, * ... tk, U1, * ... U1]yE DAITYY 

(c) If u E DAlTzz then [u]y E DAlTyz. 
(d) If t E DAlTy then [t]z E DAlTzy . 

3. DATTy = DAlTyy U DAlTyz, DAlTz = DAlTzy U DAlTzz. 
4. DA1T = DAlTy U DA1Tz. 

Here, t = [t1, ... , tk, U1 , ..., uM]Y is the tree obtained by connecting the roots 
of t1, ..., tk, ul, ..., ul by k + I arcs to a new light vertex which becomes 
the new root of t. Similarly, u = [t1, ... , tk~z is the tree obtained in the same 
manner, but with a new heavy root. 

Definition 2.7. The order p(t) of a tree t E DAlT is given by 

(1) p(t) = Wm(t) - Wf(t) if t E DA1Ty, 
(2) p(t) = Wm(t) - Wf (t) + 1 if t E DAlTz, 

where wm (t) and (of(t) are the number of light, resp. heavy, vertices in the 
tree. 
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There is a one-to-one correspondence between these trees and the terms ap- 
pearing in the Taylor expansion of the exact solution. This correspondence is 
given in the following definition. 

Definition 2.8. For every tree t E DA1Ty we define a function F(t)(y, z): Rr x 

Rm r Rr, and for every tree u E DA1Tz we define a function G(u)(y, z): 
Rr x Rm-r Rm-r recursively by: 

(1) F(TY)(y, z) = y', G(TZ)(y, z) = z= gyy 

(2) F(t)(y , z) = 
,fz.gy) fkylz (F (t 1) , F(tk) G(u1), ..., G(ul)) if 

t = [t, 5...,5 tk 5 u1 **..u11Y , 

(3) G(u)(y, z) = gky(F(t1), ... , F(tk)) if u = [t1, ..., tk]z 

where t1, ..., tk E DA1TY and u , ..., u1 E DA1TZ. The expressions 
F(t)(y, z) and G(u)(y, z) are called the elementary differentials associated 

with the tree t, respectively u. 

y' A =Ip(t)=1 

vY Ap(u) = 1 0 

(-fz19Y)1fvYY1 p(t) = 2 [TY/ 

( fzfgv) fzfgvv(Y' Y) p(t) = 2 [TV1 TV,, 

gYV (Y * Y ) p(u) = 2 [TY, Ty] % 

9Y(-fVfgY) ,ftYY p(u) = 2 [[TYLL 

gV (- fz gV) -fro gW(Y', Y ) p(u) = 2 [[[TY, TV], 

FIGURE 1. Elementary differentials and corresponding 

trees 
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Figure 1 shows the elementary differentials and the corresponding trees for 
/ * / .. y,z,y",and z . 

There exists a relation between the trees of SDA1T and those of DA1T. 
Let ts E SDAITYY and 

Fs (tS) =(- fz' gy) fkylz'(Y (pi) * Y(Pk) z(qj) z(q,) 

with p(ts) = p. Suppose that all the trees t E DAlT, p(t) < p, are given. 
Replace each branch with pi light vertices once with each of the trees t E 
DAITY, p(t) = pi, and each of the branches with qj - 1 heavy vertices once 
with each of the trees u E DAITZ, p(u) = qj. Then we have the set of trees 
t E DAlT, p(t) = p. See Example 2.2. 

Example 2.2. Let ts E SDAITY, p(ts) = 4, be the tree 

with corresponding derivative (-fz, gy) -1f>(z, y"). Replace the light branch 
with each of the trees corresponding to y", that is all the trees given in Figure 
1 with a light root and p(t) = 2. We then obtain all the trees of DAlT 
corresponding to ts: 

Then replace the heavy branch with each of the trees corresponding to z", that 
is all the trees given in Figure 1 with a heavy root and p(u) = 2: 

Similar transformations can be carried out with all the trees in SDA1T. 
For each ts E SDA1T there is a corresponding set of trees t E DA1T. Let 
t E DA 1 T be one of the trees obtained from a tree ts E SDA 1 T as described 
above. Then we call ts the special tree corresponding to t, and denote it by 
S(t). This is illustrated in the following example. 
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Example 2.3. Let t1 E SDA1Tyy and t2 E SDAlyz . The corresponding special 
trees are given by 

t = =S(ti)= 

t2 = S(t2) = 

Let a(t) be the number of times the elementary differential corresponding 
to t E DA 1 T appears in the exact solution of the model equation (2.1). We 
can then state the following result. 

Theorem 2.1. For the exact solution of (2.1) we have 

y (x0)= E a(t)F(t) (yo Zo) 
tEDAIT1 

(2.5) p(t)=p 

(2.5)z(x0) = E a(u)G(u)(yo, zo) 
uEDA1T_ 

p(u)=p 

and 

y(xo + h) = yo + E a(t)F(t)(yo , z) p(t)!' 

(2.6) DhP() 

z(x0 +h) = zo + E a(u)G(u)(yo, zo)p()!.z 
uEDAITZ 

Lemma 2.2. a(t) is given recursively by 

(1) a (T Y) = a(Tz) = 1 . 

(2) If t = [t1 , ... , tk, u1, ... ., uJ]Y, then o(t) = fl(S(t))a(tl) a(tk)a(ul) 
... a(ul), and if u = [t1, ... , tk~z, then a(u) = fl(S(u))a(tl) ... a(tk) . 
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Proof. From Lemma 2.1, Definitions 2.5 and 2.8, and Theorem 2.1 we have 

Y(P)= E f(ts)Fs(ts)(y, z) 
t ESDA1Ty 

p(ts)=p 

= E fl(ts)(-fz'9y)-Ifk 1z ,(Y (pi) y(Pk) Z(qj)5 Z(ql)) 

tsESDAIlTy 
p(tS)=p 

(2.7) = S 
(ts)(-fz'9y) fkYlz' 

tsESDAITV 

p(ts)=p 

*(E a(tj)F(tj)(y, z), ..., 5 a(uj)G(uj)(y , z)0 
t, EDAITV uIEDAITz 
p(t, )=p, p(u1)=q, 

Let S(t) E SDAITy, t = [tl, ...,tk, ul, ..., ul]Y, and p(t) = p be one of 
the trees in (2.7). The value of a(t) is given directly by comparing (2.7) with 
(2.5). A similar procedure can be used to prove the lemma for a(u) . 0 

2.2. Taylor expansion of the numerical solution of the model equation. To be 
able to find the order conditions for Runge-Kutta methods applied to the model 
equation (2.1), we have to find the Taylor expansion of the numerical solution. 
To do this, we introduce the concept of DA1-series. Similar series are given by 
Roche [14] for semiexplicit index-i problems. 

Definition 2.9. Let a: DAT -Ty R and b: DA1TZ -* R be any mappings. The 
series 

DA1Y(a 5 y0, zo) =y + ~ a(t)a(t)F (t) 
p(t) 

tEDAT P) 

DA1z(b, yO, zo) = z0+ E b(u)a(u)G(U) 
(u) 

uEDA 1T 

are called DAIY, respectively DAl z series. 

A Runge-Kutta method applied to (2.1) is given by 

f~yo+hEa11YiZ1') =0, 
S( S (2.8)~~~ h E a =Y, 

, 
s, 

zf +hE aijZ =g (yo+h a1Y 
jl28 j=l J 

s s 

(2.9) y1 = yO + hEbjY> z = Z +hEbiZ'. 
i=l i=1 
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The stage values are given by 
S 

Y, =yO+hEa11Y> 

(2.10) j=1 i= 1 
S 

zi= Zo+hEaiiZ> 
j=1 

Now Y>, y1, respectively Zi and z1, i = 1,..., s, can be written as DAly, 
respectively DAlz , series as follows: 

hp(t) 
Y,(xo + h) =yo + E v at (t) ( ) (t) 

uEDAIT1 

hp(t) 
y1 (xo + h) = yO + 5 y1 (t)a(t)F(t) 

tEDAIT PW 

(2.12) DhP() 

ZI(x0 + h) = zo + zl (u)a(u)G(u) ()!u. 
uEDA 1T 

The stage derivatives are written as 

hP(t)l 

Y11(xo + h) = 1I i(t)a(t)F(t) p(t)! 
tEDAIT,,PW 

(2.13) "hp(D)-l i=1,.,s. 

Z'(xo+h)= Z kj(u)a(u)G(u) p(u)! 
uEDAIT 

By inserting (2.13) into (2.10) we get 

Yj(x0 + h) = yo + h E aijy YO + a (Zaij.1(t)" a(t)F(t) 
j=1 tEDAlT j= 1 

s ' s ' hp(u) 

Zj(x0 + h) = zo + h E ai1Zi = zo++ E | aij k(u)I a(u)G(u) ( )!. 
j=1 uEDAT1E j=1 

Comparing this with (2.11), we have 
S S 

(2.14) vi (t) = E aijlj(t), wi(t) = Zaikj (u). 
j=1 j=1 

Similarly, by inserting (2.13) into (2.9) and comparing with (2.12), we have 
S S 

(2.15) Y1 (t) - bil(t), z1 (u) = b biki(u) . 
i=l i=1 
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The Taylor expansion of the numerical solution can be written as 

00 P- 00 

(2.16) t YI z i p= 
(2.17) Yi=Yo+Yr ~p! ZiZ ip!' 

p=l p=1 

oo (P hp oo(P hp 
(2.17) Y1 = Yo+ EY p! =z 1 OE p! 

p=1 p=l 

Comparing (2.13) with (2.16), (2.11) with (2.17), and (2.12) with (2.18), we 
have 

(2.19) kj(p) = Ii l(t) a(t) F(t), Z1. = kj(u)a(u)G(u), 
tEDAITY uEDAIT1 

p(t)=p p(u)=p 

(2.20) Y(P) = E v-(t)a(t)F(t), Z1 = wi(u)a(u)G(u), 
tEDA1TV uEDA1Tz 

p(t)=p p(u)=p 

(2.21) )(P) = y y1(t)a(t)F(t), 2"P = z1 (u) a(u)G(u) . 
tEDAITV uEDA1T- 

p(t)=p p(u)=p 

We use the notation yi(Pk) (tk) for the term ao(tk)l (tk)F(tk), and Zi~)(u1) for 
the term a(u1)t1(u1)G(uj), where Pk = P(tk) and q1 = p(ul) . Similar notations 

are used for the terms in Y(P) Z(P), y (P), and z(P). Equation (2.8) can be 
written as 

(2.22) - (Yo +Y i-p, h Ez ) hp 

(2.23) += g (Y+ + 7 Y j p!). 
p=1 P. = 

! 

The nth derivative of (2.23), evaluated at h = 0, is 

1 - = 
gk(y(PI)(tj), 

* Y(Pk)) 
S(u)ESLDA IT, 

u=[tn, *--, tkz 
p(u)=n 
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By use of (2.20), Lemma 2.2, and Definition 2.8 we have 

y(n) = S /(S(u))ae(tl) ...(tk)Vi(tl) Vi(tk) 

S(u)ESDA1T 
u=[t , ..., t~.] 

p(u)=n 

*gky (F(tj), *@F(tk)) 

(2.24) = 5 a(u)vM(tI) Vi(tk)G(u). 
S(u)ESDA 1T 

u=[ti, ..., t.] 
p(u)=n 

Comparing this with the expression for Zy() in (2.20), we obtain 

(2.25) wi(u) = vi(tl) .Vi(tk) , i = 1,..., s, 

for all u = [tl, ..., tk4z E DA1Tz. Multiplying the (n - l)st derivative of f 
(given by (2.22)), evaluated at h = 0, by (-fz, gy)1 gives 

g 
fz 

- 
g f(n- 1) 

1h= 

(-fz' gy) fkylz' 
S(t)ESLDA1T,1,V 

t=[tl,..., ujI, 

From (2.10), (2.16), and (2.17) we have 

Z(n) = Ed jZ(n= Ed11 S g(y(YP (tl)U . (.. 
J= 1 

~j= 1 S(u)ESLDA1T u=[t *- q tk]q 

p(u)=n 

Thus, from (2.24), 
S 

(-fng) Z(n) - -dP S (/ ,) ... 
7(1k)) 

j=1 S(t)ESLDA1T, 
t =[tl tk]j], 

p(t)=n 

Substituting this into (2.26), and using (2.19), (2.20), 2emma 2.2, and Defini- 
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tion 2.8, we obtain 

yI. )= vi(t)a(t)F(t) 
tEDAITV 

p(t)=n 
S 

= nEaij E a(t)vvj(t) V(tk)-k.(u) -kj (u F(t) 
j=1 S(t)ESDAITy 1 1 

t=[, ..., UJ]V 
p(t)=n 

+ z a(t)vI(tl) ... Vi(tk)F(t). 
S(t)ESDA1Ty: 
t=[[tl , ... , tk]z]v 

p(t)=n 

We then have 

(2.27) v(t) = n Eajvj(tl) vj(tk) (j)kj(ul).. p (u) , 

i= 1, ... , s, 

if t = [tl, , tk, u, .., u]Y e DA1TYY, p(t) = n, and 

(2.28) vi(t) =Vi(tI) ..Vi(tk) 5 i = 1, . . ., s, 

if t = [[ti, ... , tkjzjy E DA1TYZ. By using (2.14), (2.15), (2.25), (2.27), and 
(2.28) we can state the following lemma. 

Lemma 2.3. The quantities Y1> y1, respectively Zi and z1, i = 1, ... , s, are 
DA1 Y respectively DA1 z, series given by (2.1 1) and (2.12). The coefficients 
of these series, and the series of Y/' and Z', in (2.13), are given recursively by 

li(t) = P(t)Vi(tl) ... Vi(tk) )ki(uI ) 5 ... * p(u1) ki I 

(2.29) S 
ki (u) = dijvj (t1 ) . . Vj (tk) 

j=1 

for t = [tl, ... tk, u1, .., uIY E DATY, and u = [tl, ... tkI z E DA1Tz, 
and by 

S S 

(2.30) vi(t) = E aij j(t), wi(u) = aijkj (u) 
j=1 j=l 

and 
S S 

(2.31) Y1(t) = bi Ib(t), Z1(u) biki(u)= 
i=l i-l1 

where Ij(0) = 0, ki(0) = 0, and 

(2.32) li(Ty) = 1, ki(Tz)= 1. 
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Note that the coefficients li(t) and ki(u) can be written as 

1 1 
1()=p~t a. ... a. 

(2.33) p(u1) p(Ud) 
E 

finl 
ink 

-Ini (t1 ) * **1nk (tk)ki(ul ) 
... 

ki (ul) 

for t = [tl,. ,tk, u1, ...,uY E DAITY , and 

S S 

(2.34) ki(u)= adja aJIll,(t.) 'n (tk) 
j=1 nI,., nk =1 

for u = [t1, ..., tk~z. Equation (2.32) can be proved by inserting (2.16) into 
(2.8) and using the Taylor expansions of f and g . We can then express (2.8) as 
power series in h . The first terms in these expressions will give us f(y, gy Y') = 

0 and Z1' = gy, so that 

(2.35) Y' =y' and Z'=z . 

Comparing this with (2.19), we have that 

Y = 11(T )F(TY) = Y = l1(-1) = 1. 

Therefore, ki(Tz) is given by (2.29) and (2.30). 
We observe that y1(t) and z1(t) can be written as y(t)1D(t), where y(t) is a 

rational number and (D(t) is some combination of the method coefficients. The 
number y(t) is given by the definition below, and (D(t) can be read directly 
from the tree, by the following procedure. Let t E DAlT. To the root of 
the tree, attach the label i if the root is light and j if the root is heavy. To 
the other vertices, attach other labels, say k, 1, m, .... For each arc write 
down the factor aVW if the succeeding vertex (labelled w) is light, v, w being 
the labels at the end of the arc. Similarly, write down the factor dvw if the 
succeeding vertex is a heavy vertex. Insert a further factor bi if t E DAlTY, 
and bidij if t E DAITZ, and sum over each index i, j, ..., k in the range 
from 1 to s. The sum is 1D(t) and is called the elementary weight for the tree 
t. To each tree we also associate the following rational number: 

Definition 2.10. Let y(t): DAlT -* Q. where Q is the set of rational numbers, 
be defined recursively by 

Y(Y 1 Y(Tz) 

p(u=) p(u1) .Y(t1) ... y(tk)Y(Ul) Y(Ud 

for t =[t, ..., tk, ul, ..., u1]y E DAITY, and 

y(u) = Y(t1) ... 
Y(tk) 

for u =[tl, ..., tkz E DAITZ. 
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Example 2.4. Let t E DA1Ty and u E DA1TZ . Their elementary weights and 
rational numbers are given by 

P n 

k I n o hi 

a m ~~~~~~~~~~k X 

i I 
S S 

?D (t) E bld1jajkaj/dimamnamo 'D (u) E b1dij ajkaj jaodim amn amp 
ijklmno= I ijklmnop= 1 

3~) y(U)= 3 

The order conditions for Runge-Kutta methods applied to DAE problems are 
given by the following theorem. 

Theorem 2.2. If the method (1.2), (1.3) is applied to the problem (2.1), then 
the order of the local truncation error is p + 1 if and only if 

1(t) =y(t) 

for all t E DAlT with p(t) < p . 

Proof. The Taylor expansion of the exact solution of (2.1) can be written as the 
DAl series 

(2.36) y(xo + h) = DAly(py 0, Zo), z(xo + h) = DAlz(pz, yo zo) 

with py, pz = 1 for all t E DAlT. By comparing (2.36) term by term with the 
DAl series (2.12) for the numerical solution, and by using (2.33), (2.34), and 
Lemma 2.3, we have proved Theorem 2.2 for the model equation (2.1). Theo- 
rem 1.1 shows that this result is also valid for the general index-I problem. 0 

2.3. Simplification of Theorem 2.2. Let t E DAITY; then t can be associated 
with a simplified tree 7 as follows: If a heavy vertex has no ramifications, and 
is followed by a light vertex, then the tree can be simplified by removing these 
two vertices. Similarly, if a light vertex (except the root) with no ramifications 
is followed by a heavy vertex, the tree can be simplified by removing these two 
vertices. The simplified tree 7 corresponding to t is the tree which is simplified 
as much as possible. 

Example 2.5. The figure shows a tree t and its corresponding simplified tree 7. 

Ad i 
t i 
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The set of simplified trees t is defined recursively by 

Definition 2.11. The sets DA1TY c DA1TY and DA1TZ c DA1TZ of simpli- 
fied trees t are defined recursively as follows: 

1. Ty E DA1TYY . 

2. (a) If l .,kEDAITYY and k > 1, then [fl, ...Ytk]zEDA1TZ. 

(b) If ll, ,I k EDA1TYY, -. , E DATZ k >O or k=O, 
I > 1 , then [tl,5 ..., t5, -a .. u E DAlTy. 

(c) If u E DA1TZ, then [u]y E DA1TYZ . 
3. DA1T, = DA1T33 u DA1T3, . 

Theorem 2.3. To each tree t E DAlT there is a corresponding simplified tree 
t E DA1TY such that 1(t) = 1(i) and y(t) =y(t). 

Before we prove this theorem, we will give an example. 

Example 2.6. Consider the tree t and the corresponding simplified tree t given 
by Example 2.5. Their elementary weights are given by 

S S 

2 3 
D(t)= , bdijcjajkdklci D(Y) bidijcj 

i,j,k,l=1 i,j=1 

By using the fact that 

E ajkdkl = hj=l {O otherwise, 

we have that D(t) = 1(7). In addition, we have 

y(t) = 3. (3 *.(I *2 (I * (I * 1)))) = 15 y(t) = 3. (3 * (I * . 1))= 1, 

in agreement with the statement of the theorem. 

Proof of Theorem 2.3. Let 

t = [t1, ... tk tp 7 kuu~ E DAIT, 

where 

tp= [uP]y = [[tp, 1 * * * tpkP zly E DAlTYZ, 

uq = [Itq~z = [[q, 1 5 .. * * q tqk q uq, 1 * *" *,i uq Y]z E DAITZY , 

tl ** tk 5tq qtp, 1 * ... tp,kP' tq,1 5 tqkq E DAITyy 

u9, . .1 ., uP up -aq, 1 5 ... ., uq,l, E DAITZ . 

From (2.33), (2.34), and Definition 2.7 we have 

Ij (tp) = P(tp) (_ )kj (up) 

(2.37) s s 

Zdjm Z amNA am, IN,(tp, 1). INA (tp, k )' 
m=1 N1,., Nk = I 
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S S 

kj(uq) = E dij E ajmlm(iq) = li(tq) 
j=1 m=1 

(2.38) P (q )Us1 *pusq 

S 

* E aiM I * Mk Iml ( q, 1 ) .. i ( , Iq) 
ml, ...,I Mkq =I1 

By using the fact that P(uq) = P(tq) we have 
S 

(2.39) 1i(t) = a(t) . . . a alN1 ... aNk aM ... a Mk (t)> (t), 
nl ,. nkl N1, ..., Np=1 - 

kp 
ml, ..., Mkq =I1 

where 

(t) = p(t) 
Oa,) T(--U=,-) P~~aq, 1) (1qqkq)' 

_Z(t) in, (tl ) ..Ink (1k0lN, (tp, 1 ) ..INkp (tp, kp )IMI (tq, 1 ) 
.. 

Mk (tq, kq ) 

and 
(t)= ki(Ul) ki(-i)ki(lq, I ) ki(aq, Iqj) 

Therefore, 

(2.40) i(t) = i(7) 
where 

t [t i * i k 5 tp, 1 ** tpkp 5 tqs tq, kq' 

U Uq, 1, ***UqI]y E DAlTyy. 
It is obvious that this result is valid even if the tree t consists of more (or 
less) than one subtree t E DAITYZ and more (or less) than one u E DAITZ. 
Similarly, if u = [il, ..., tk, t where tp = [Up= ., E 

DA1Tyz and t1 7 ..tk' p 1'**, tPk EDATYY, then 

(2.41) ki(u) =ki(a) 

where 
U[tl, *** t l, tp1,*, tP'pz IE DAITZ. 

If t = [U]y e DA1TYz, then 7 = [U!]yz By repeated use of (2.38) and (2.41) 
we can show that for all t E DA1TY and for all u E DA1TZ there exist corre- 
sponding simplified trees 7 E DA1TY and u1 e DA1TZ such that li(t) = lij) 
and ki(u) = ki(9) . From (2.37) we have 
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Inserting this into (2.31), we get y1(t) = y(l() and z1(u) = y(lt), where I = 

Ply E DA1TYZ . Theorem 2.3 is proved. o 

In Figure 2 we give the order condition related to the trees up to order 4. 

.~~~~~~~~ 

PMt t 4b(O = 1 

1 Z 
Ebi,=1 

2 / bict 
2~~~~~~~~~~~~~~~ 

2 Zbidiic. = 1 
ij 

1 

3 Zbiac = 3 

3 K Z bidiid3c= 

3 Z 2bd,3cd1 
ijk 

3~~ Zbaidicaic = 2 

ibj 

3 Z Ebsdic3= 1 



606 ANNE KVAERN0 

p(t) t 1(t) 

4 Z bic~dijc = 

ijk 

4 E bictdij cj2 dikC2k- 

4 bidcj2dikc2kdilc 2 
ijkl 

4 Z biciaiici= 1 
ii 

~33 4 biC i = - 
ii ~~4 

4 J Z bicidiiciajkck = 
ijk 

4~~ biaiicidikC~k =4 

4 N L bidicjdikc3k = 2 
ijk 

Zbidijcj~dikckakl Cl= 
4 s~~~~~~~jkl 4 
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p(t) t 1 

4 1biajc= 

12 

I ~~~ijk 
Y 2 ~~~~~~~~~~1 

4 Z Ebiaiid3&ckd icl 2 3 
ijkl 

4 E biaiajkck = 
ijk 2 

4 Zbidij1c = 1 

4 Ej bid,,ciakck = - 
ijk 

4 'V Z bidiicjty&ck = 3 
ijk 3 

4 bidijcjajkCkdki C12 
2 

ijkl 10 
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pMt t ?D(t)- (t 

4 SD E bidijcjajkdkIC'dkmcm =C 3 
ijklm 

4 Z bjdj1cjajkakICI =1 
ijkl 

1 
4 E bjdjajkCkakaCc = 4 

ijkl 

FIGURE 2. Order conditions related to trees. 

3. CONVERGENCE RESULTS 

This section deals with the convergence of a Runge-Kutta method applied to 
the differential-algebraic equation (1.6). The system is assumed to be a uniform 
index-i problem. We first give some preliminary results about the existence of 
a solution of the Runge-Kutta equations, and the influence of perturbations to 
the solution of these equations. The convergence results are given in ?3.2. 

3.1. Preliminary results. The results of the next two theorems are essentially 
the same as those given by Hairer et al. [7] for the index-i component of a 
Hessenberg form DAE of size 2. 

3.1. 1. The existence of a Runge-Kutta solution. 

Theorem 3.1. Let (v, 4) satisfy 

f (v, C) = (h), g(v) = 6'( 2 

Let the coefficients of the method satisfy 

(3.1) f(flv 5 C) = a(h) 5g v(li) = &(h2) *i = 1 s 
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where vi = v + c hC and c, = S> a,1. Suppose that 

[V j | <Ml and 11fvl IIM2 

in an h-independent neighborhood of (v, 4). If the coefficient matrix v of the 
method is invertible, then there exists a solution of (1.2), (1.4) which satisfies 

(3.2) V' = 4 + 6(h), Vi = v + 6(h). 
Proof. Consider the homotopy 

(3.) (ij) = (1-)g(i), 
S 

ij 

V=v+hEa jV. 
j=1 

For - = 0, this system has the solution Vi' = 4', Vi=Pi. For = 1 it is 
equivalent to (1.2), (1.4). We consider J< as functions of T, and differentiate 
(3.3) with respect to this parameter: 

S 

fV' (Vi Vi')V fi + J fV )hZ E V1 =a-f(ji, 4'), 

j=1 i=1,...,s 
gv ( Vi)h E aij V' = -g (pi) , 

j=1 

Dividing the second equation by h, the system can be written in matrix form 
as follows: 

(3.4) f{fV'} + hffv}(JV0 In)] - [f(V5 4')] 
[ gV I W IM) ] Tg> 

Here, {fA }, {fv }, and {gv } are block-diagonal matrices: 

{f,} = blockdiag[fv, (V , Vi'), fv (Vs. J V)]s/ 

etc. Furthermore, V' = [S'f,..., gT1T Im is the m x m identity matrix, 
and f(v, 4') and g(v, 4) are 

[f T( 4') T (p 4f)]T and [gT(p) gT (PS)]T 

resp. We have gv (Vi)aij = aijgv (Vj) + (d), provided that J Vi - Vj 
? < d, d 

independent of h. Then the coefficient matrix of (3.4) can be written as 

[ {fit} + (h) 1 
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and (3.4) becomes 

3.5) F {t1 } +& (ah) Vx_ - f(v, C) 
(3.5) 

~ {gv I + (<(d ) 71 W-5 0 IM) k(V) 

The matrix here has a bounded inverse, provided that d and h are sufficiently 
small. Using the assumption (3.1), we have V' = (h) and 

'r 

(3.6) Vi =4+ jVi'(t) dt =4+ 6(h). 

This shows that all V'(z) remain in a small, h-independent neighborhood of 4 
for all T < 1 and for sufficiently small h . Hence, the differential equation (3.4) 
with initial values V'(0) = e S 4C possesses a solution at least for 0 < z < 1 . 
This proves the existence of a solution Vj' of (1.2) and also the first estimate 
of (3.2). The estimate for Vi follows directly from (1.4). o 

3.1.2. The influence of perturbations. 

Theorem 3.2. Let Vi', Vi be given by (1.2), (1.4) and consider perturbed values 
Vi', Vi satisfying 

f(Vi , Vi )+d 

(3.7) g(Vj) + 6i 0, . 
S 

1=1 

In addition to the hypotheses of Theorem 3.1, assume that 

(3.8) v - v = 6(h2), si = 6(h), Hi =6(h2). 

Then, for h < ho, we have the estimate 

i - Vi'i OO CO( ig (v) * ( - V)AK + ||fV(iv, 4) (v v )KOO 
(3.9) + lHI - vK| + IIIKOO + IHOIOO) 

where a = [[, ...,s and O = [6T,, 6[ OS 
Proof. Consider the homotopy 

f (~-Vi/) i+ (I -T)6i =0 

(3.10) g(VJ) +(1-) =0, i = 1,T., s. 
S 

v= l+hE aI Vj' + ( - T)( -V), 
j=1 

For z = 1 , this system is equivalent to (1.2), (1.4); for z = 0, it is equivalent to 
the perturbed system (3.7). As before, Vi and VJ' are considered as functions 
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of T, and (3.10) is differentiated with respect to this parameter. We then obtain 

4v (Vi Vi ~-) Pi' + fvV, (Vi 6V i = ?, 

gV(V~i V- i =O i= ,..s S~~~~~~~~~~~~S 
i = h Eaij Vjl- ( - V) 

j=1 

Inserting the last equation into the other two and using as before 

gv(Vi)aij = aijgv(Vj) + &(d), 

we have 

(3.11) [{ff~} + (h) 1V('- e{f }(e5?(v-v))+3 1 
L {gv + '(d)J L GW (9 IM) ({gv}(e5 0 (,v-sv)) + 6)J 

As in the proof of Theorem 3.1, the matrix is nonsingular for h and d suffi- 
ciently small, and we have 

JJVIKoo < Cl(iifv(i' - v)iKoo + 1131K + hII(il - v)ii) 

+ 
2 

(Jigv(O - v)iioo + 1161100 + hiI(O - v)iioK). 

The term hii(O - v)100 comes from the &(h) term in the matrix of (3.11). 
Now, by (3.6), the assertion of the theorem is proved. 0 

For the special case where 3 = 0 = 0 and v - v = &(h) we have 

(3.13) {{Vi' - Vi'iioo < C3 

3.2. The convergence of the methods. We now give a result concerning the 
growth of a perturbation in the solution computed in a single step of the method. 

Lemma 3.1. Let the assumptions of Theorem 3.1 be satisfied. Suppose that 

vn = v(xn) + en I where lien i = 6(hkG) . Let vn1 be the solution of 

f(vn + hEaiV , Vi') =0, O 
j=l 

(3.14) g n +hE V 
=0, j=l 

S 

Vn+ =Vn+hEbiiJ. 
i=1 

Then 
,T 

_, 

fV 0 
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where 
( (hk ) if kG > 2, 

4 = 4 (h kG+) if kG = 1 and f is linear in v', 

& (h) if kG = 1 and f is nonlinear in v', 

and dn+i is the local truncation error. 

Proof. Let VJ' = Vj' + AJV', where V' is the solution of (3.14) if vn = v(xn). 
The equation (3.14) can be written as 

(. 5)+en +hEaijAVj' Vi +AV<) 0, i 

(3.15) 
j i= 1, ., 

(~~~~~~ 
g Vi+en +hEahZ aA vj 

j=1 

where V =V (Xn) + h s=, ajjV'. Theorem 3.1 shows that V= V(Xn)+ (h) 
and Vn = v'(xn) + &(h). We assume that (3.14) is solved exactly. From 
Theorem 3.2 with v - v = en we have that IIAVj'II < Ch for kG > 2, while 
IIAV'iI ? C3 if kG = 1 (see (3.13)). Let IIAV 'iI < J and IJenII ? e. In the 
following, if nothing else is said, all functions and their derivatives are evaluated 
in (xn, v (xn)) . By expanding (3.1 5) in a Taylor series around (Vi, Vi') we have 

(3.16) f(Ji, V<) + ftV(V , ViJ)A"V + qf = 0, 

where qf is the sum of higher-order terms, composed of terms of the form 

(e +h~ai1AV.) 
( j=l i 

(en + h aia AV, AVi) 

fvlvl * (AV, AVi). 

Thus, we find that 

qf =(C + h3) + &(C + h3 2) + (62). 

Using that fV,(V1, V') = fv, + &(h), we have from (3.16) 

(3.17) fA = (e + h3 + , + h2 + 62). 

Similarly, 
g( g h (e s +h A)+g= 

g(Vi) + (gv + 6(h)) en + h E a jAV. + rq = O 
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where the higher-order term 11g is composed of terms of the form 

V en +hE a1AVJ') 

V j=l 

so that 

qg =&(e2 +h +h 322). 

Thus, we find that 

2 
6 

(3.18) gV A - dij gven + e+ha + + h . 

Equations (3.17) and (3.18) can be solved for AV': 
(3.19) 

'A 
] [, -'e = Aij ] en+h a +eh+6+h3 +-e +3' 

To find a lower bound for A V', we use the same strategy as in [1 and 10]. We 
have 

2 2 \ 
AVi 1 ' K yh+8+h3+83+h3 + -+v}. 

Let 3 be the solution of the equation 

(3.20) 3 =K h+8+h3+e3+h2 +h+32) 

Let e = 6(hkG) , where kG > 2, and solve (3.7) by functional iteration 3 = G(3) 

with the initial value 3(0) = k hk-l . Then "(1) = G(3'0)) = &(hk- ) and 

I&G/&I3 = 6(h) < 1 for h sufficiently small. We can now use the Banach 
Fixed Point Theorem to conclude that the iteration converges to a solution 
satisfying 

3 =(hkG- 
I 

for kG > 2. Inserting this into (3.19), we have 

(3.21) A [< - ] [z d en +6(hk fork G ?>2. 

If kG = 1, then = a(1), so that 

(3.22) [ Av ES- Idij ] en + (I) for kG = 1. 

The term &(1) comes from terms of the form 
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These terms do not appear in problems linear in v'. We conclude that (3.21) 
is valid for such problems, even for kG = 1. Inserting (3.21) or (3.22) into 
(3.14), we have 

s 

Vn+i = n + h Ebi(Vi+ AVi') 

=v(xn)+h E bi j'+e n bidij [V 1[v ]en +? 

where &=i(hkG+l) for kG> 2, or if kG= l and f is linear in v'. If k 1 
and f is nonlinear in v', then 4= (h) . From 

v v(x + h) + d +l +(1 (b Uv1 es) [fV l[ 1 ]) + 

we thus have 

n+ (Im (bV s) [ V ][;V]) en+ +dn+l. ' 

We now consider the global error resulting from repeated use of the method. 

Theorem 3.3. Suppose the index 1 problem (1.6) is solved numerically by an 
s-stage Runge-Kutta method. Assume that 

1. f, g are sufficiently differentiable. 
2. The initial values satisfy 11v0 - v(xO) II < 6 (hkG) and f(vo, v') =(h). 
3. (a) kG> 2 for problems nonlinear in v'; 

(b) kG> 1 for problems linear in v', provided that f(vn, vn) = 6(h) 
and g(vn) =6&(h 2). 

4. The local truncation error satisfies 
(a) P dn+l =&(h G+1 ), Sndn+1 = (h G) if I1 -b T5I Is< 1; 
(b) Pn dn+ = (hkG+l), Sndn1 = (hkG+l ) if Ii - bT le 5 = 1, 
where 

Sn = 
v(V 

[ (Vn) ] [g U Pn =I. Sn. 

Then the global error is at least of order kG . 

Before we prove this theorem, we comment on assumptions 2 and 3(b). The 
relations 

(3.23) f(v )= (h) and g(v 2 

have to be satisfied to ensure a solution of the system (1.2). The relations (3.23) 
hold for the initial step by assumption 2. For kG > 2, (3.23) is satisfied if 
vn = v'(x) + &(h), which is easily obtained, for example by using vn~1 = Vt. n Vn+1 

= V~~~~~~~~~~~~~~~~~~~~~~~~~S 
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For kG = 1 we have to make these assumptions explicitly. All Runge-Kutta 
methods with bi = asi satisfy assumption (3.23). 

Proof of Theorem 3.3. The interval of integration, [x0, Xend], can be split in N 
subintervals, Hk = [Xk, Xk+lI, k = 0, ... . N- I, XO = x0, and XN = Xed . 

We assume each Xk to coincide with some x,,. In each subinterval, there 
exists a constant permutation matrix Q(x), Q(x)v = [y T, z ]T ensuring gz 
to be nonsingular over each subinterval. The subintervals are chosen so that 
Q(x) has to be changed over two adjacent subintervals. First, we will prove 
the theorem over the first subinterval, Ho, and we assume the variables to be 
numbered such that Q(x) = Im in Ho. Thus, we have 

[fv [ f fzy 

p t f g-g)1_t lgg )-f g- 
- -g(f _ t g _- -g(f _ t g- g )-1 g- - -1/-1/-1 1 g-1+ 

_9i yz( z9zgy) g y (f z 9z gy z z 

Inserting this into the expression for the global error in Lemma 3.1, we have 

(3.24) en+1 = (I. - (b V 1es)S(Y z))en + 4n+1 + dn+1 

where 
r ~~~-11 

S(Y z)= [g~gz g zz gy + 9 y gZ gyFPfz'+IJ-r 

and FP = (fr' - fz g-1g)-1 . Thus, (3.24) can be written as 

(3.25) en+1 = Pnen + rSnen + dn+. 

where P = I -S, Sn = S(Yn, zn), Pn = P(Yn Zn), dn+1 = dn+1 + 4n+1 ,and 

r = 1 - bTVles . For each subinterval, Sn and Pn are projection operators 

satisfying Sn = Sn and P2 = Pn . In fact, P(y, z) represents a projection into 
the tangent space of the surface given by g(y, z) = 0, because [g , gz]P=0. 
The components of P and S are smooth, so that 

Sn+1Sn = Sn + 69(h), Pn+1 Pn = Pn + 6(h), 

Sn+A~ = 6f (h) Pn+,Sn = 6(h) . 

Multiplying (3.25) once by Pn +1 and once by Sn+1 I we obtain 

(3.26) [I iPn+leen+l 
- 

[1 + 6(h) 69(h) iF IIPneni 1 I iPin+ldn+1 
[II26 + e+I 

< 
69(h) IrI(1 +69(h)) ILISe J+ [i dJ i * H lSn+l n+l11 -L _h _r( h)JiLlSnenii- 2 L sn+l n+ 11 L 

Suppose that iiPn+ldn+lii < Dp and iiSn+ldn+lii < Ds. Then (3.26) can be 
written as 



616 ANNE KVAERN0 

where 
A(h) = [1 (h) 6+(h) * 

The matrix A(h) can be diagonalized by a matrix T(h) such that 

0I IrI(1h&(h) 
T(h)A(h)T-'(h) =[1 +a(h) 0 

where 

T(h) E 1+ &(h) (h) 1 
& <(h) I + &(h). 

The inequality (3.27) can be written as 

[llPnenill < T-1(h) [(1 +Knh)n ( K T(h) 
Lllsnenll - L O irin(l +K2h~n ( )LSOeO{{] 

+ T-(h) [(1 +Klh)' In-i( +K h)n-i] T(h) D 

By direct computation we have for Iri < 1 

[ IPnenill F C1 IlPoe0I + (h)IIS-e0II 1 + F kC3DP + C4D5] 

IISnen IIJ -[1(h)JiPoeoii + C2(Irin + h)ISOeOIIj L C5Dp + C6DSJ 

and for Iri = 1 

[ IIPnenII] < JJC1IIPoeoJ + 6(h)JiSOeOiI] + [ IC3Dp + C4Ds 1 
IiSnen - 6'(h)JiPoeoii + C2IISOeOI _ I C5DP + C6D5 I 

By using the fact that Ile II < iPnen II + IiSnenII we obtain 

f C(JJPoeoll + (Irin + h)IISoeo+h + + Ds) for Irn < 1, 
(3.28) I le (~0I+ (~HD) nI 1 < 

CJeJ '(P+s)for Ini = 1. 

Thus, if eo = <(hkG), Ds = (hkG+l) and DS = (hkG) for Iri < 1, or 

DS = &(hkG+l ) for Ir = 1, we have that the global error at the end of the first 
subinterval is given by 

(3.29) E= en = (h kG) 

In that case, the global error after k + 1 subintervals is bounded by 

IIEk+lII < GIIEkII + Dh G, 

and the error at the end of the interval of integration is bounded by 
N\ 

lIENi I? CN Ileoil + ( C 'D) hkG. O 

Theorem 3.4. Let assumptions 1, 2, and 3 of Theorem 3.3 be satisfied. Then, 
if II - bT-ejsl < 1, and 

?(t)= 1 (teiDAITyy p(t)<kG, 
(D(t)=- t WE _____ 

y(t) DAITy, p(t) < kG -1, 

the order of the global error is kG. 
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Proof. We first prove this theorem for the model equation (2.1). The local 
truncation error for a method with local order kL applied to this problem is 
given by 

E (y(t)FD(t) - 1I)a(t)F(t) -(t) 
tEDAIT PM 

d= p(t)=kL hp(U) + (hkL+l) 

Z (y(u)(D(u) - I)a(u)G(u)p(U)! 
UEDA1TE 

L p(u)=kL 

The first term in this expression is called the principal error term. The principal 
error term can also be written as 

(_f g / (fg)l 
L _ g )- _g z_ ' g) )-, f, +I 
L iyz (y yt ftgy ) fz Inr 

p(t)=kL 

0 E (y(u)(D(u) - 1)a(u)G(u) h()! 
tEDAIT. PMu! 

p(u)=kL 

where F(t) = fkylz(F(tl), ... , F(tk), G(ul), G(ul)) for t E [t1,..., tk, 

u ..., u4 Y, and F(t) and G(u) are given by Definition 2.8. For the model 
problem, S(y, z) and P(y, z) are given by 

_ Ir (fz' gy) fz' 10 (-fz~gy)- fzl 

- L zmr - gy(-fz'gy)-t - Lo g -Z' gy) ltz' 

Multiplying dn by Pn, we obtain 

F E ( y (t) (Dt) - 1) a(t)F (t ) 
hp (t) | 

tEDAIV p1T)! 
p Ir 01 p(t)=kL' 

( E (y(u) D(u) - 1)a(u)G(u) (u) 
UEDA1T-- 

L p(u)=kL 

+ 6(h kL+l) 

Let FD(t) = 1/y(t) for all t E DAITYY, p(t) = kL, and FD(t) $& 1/y(t) for at 

least one t E DA1TZZ, p(t) = kL. By (3.30) we have that Pndn = &(hkL+l), 

while Sndn = (hkL). From Theorem 3.3 we then know that the global order 
of the method is kL. Now, the assertion of the theoremn follows directly from 
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the fact that the set of simplified trees associated to DA TY , resp. DA T1 
is DAITYY, resp. DAITyz . 

This result can be extended also to include the more general equation (1.6). 
For this equation, the principal error is composed of terms of the form 

[f r f<1 l [fklzk)'l,(Y .. y(Pk+k) (ql) (q+, ) 1k 
L Y 

gj L g ((pi) y(Pk) z(q,) z(q ) 
h 

where y(P) and z(q) are derivatives of y and z of order less than kL . We can 
show that 

[gy 9z] [-z gy(f lf Igz gy) ?] 

The projection operator P suppresses all the contributions to the local trunca- 
tion error coming from derivatives of the algebraic equation. Since the algebraic 
equation in (1.6) and the model problem are equivalent, assuming gz nonsin- 
gular in (1.6), the conclusion for the model equation is also valid for the general 
problem. o 

4. NUMERICAL EXPERIMENTS 

In this section we present the results of some numerical experiments on var- 
ious index 1 systems. The experiments confirm that the local order predicted 
in ?2 occurs in practice, and in no case is the observed global order less than 
the lower bound given in Theorems 3.3 and 3.4. The experiments below were 
performed in single precision on a Cray X-MP computer. The test problems 
are: 

P1: A linear constant-coefficient system of the form Av' + Bv = g(x) . 
P2: A linear system with time-dependent coefficients, A(x)v'+B(x)v = 

g(x) . 
P3: A nonlinear system, linear in v', A(v, x)v' = f(v, x). 
P4: A system nonlinear also in v', f(v, v', x) = 0. 

The problems are described in Appendix A. The test problems were solved by 
the following Runge-Kutta methods: 

Ml: 2-stage, 3rd-order, A-stable SDIRK method (N0rsett [11]). 
M2: 3-stage, 3rd-order, B-stable SDIRK method (N0rsett and Thomsen 
[12]). 
M3: 5-stage, 4th-order, strongly S-stable SDIRK method (Cash [4]). 
M4: 7-stage, 3rd-order, extrapolation method, based on fully implicit 
backward Euler, written as a DIRK method. 
M5: 2-stage, 2nd-order, Lobatto IIIC method (Chipman [5]). 
M6: 3-stage, 4th-order, Lobatto IIIC method (Chipman [5]). 
M7: 3-stage, 5th-order, Radau IA method (Butcher [3, p. 228]). 
M8: 2-stage, 4th-order, Kuntzmann-Butcher method (Butcher [3, p. 
219]). 
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M9: 3-stage, 6th-order, Kuntzmann-Butcher method (Butcher [3, p. 
220]). 

The results of the experiments are given in Tables 4.1-4.4. The following nota- 
tions have been used: 

kd: The order of the method when applied to an ODE. 
kP: The order of the global error, predicted by Burrage and Petzold in 

[2, Theorem 1]. 
kL: Predicted order of the local error. 
k1: Observed order of the local error. 
kG: Predicted order of the global error. 
kg: Observed order of the global error. 

TABLE 4.1. Predicted/Observed Orders for PI. 

Method _d kP kL ki kG jg 
ml 3 2 2 2 2 2 
M2 3 2 2 2 2 2 
M3 4 2 3 5 2 4 
M4 3 2 4 4 3 3 
MS 2 2 3 3 2 2 
M6 4 3 5 5 4 4 
M7 5 3 3 3 3 3 
M8 4 2 3 3 2 2 
mg 6 14 14 14 3 4 

TABLE 4.2. Predicted/Observed Orders for P2. 

Method kd kP kL k, kG 
Ml 3 2 2 2 2 2 
M2 3 2 2 2 2 2 
M3 4 2 3 5 2 4 
M4 3 2 4 4 3 3 
MS 2 2 3 3 2 2 
M6 4 3 5 5 4 4 
M7 5 3 3 3 3 3 
M8 4 2 3 3 2 2 
m9 6 14 14 14 3 4 

TABLE 4.3. Predicted/Observed Orders for P3. 

Method kd kP kL k1 kG k9 
Ml1 3 2 2 2 2 2 
M2 3 2 2 2 2 2 
M3 4 2 3 3 2 2 
M4 3 2 4 4 3 3 
MS 2 2 3 3 2 2 
M6 4 3 5 5 4 4 
M7 5 3 3 3 3 3 
M8 4 2 3 3 2 2 
m9 6 4 14 14 3 4_ 
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TABLE 4.4. Predicted/Observed Orders for P4. 

Method kd |kp kL k, kG kg 
ml 3 - 2 2 2 2 
M2 3 - 2 2 2 2 
M3 4 - 3 3 2 2 
M4 3 - 4 4 3 3 
M5 2 - 3 3 2 2 
M6 4 - 5 5 4 4 
M7 5 - 3 3 3 3 
M8 4 - 3 3 2 2 
M9 6 - 4 4 3 4 

a Theorem 1 in [2] gives no lower bound for problems nonlinear in v'. 

In no case is the observed local and global order lower than the predicted 
one. However, for P1, the order observed is higher than expected for several 
methods. The reason is the simplicity of the problem. For linear, constant- 
coefficients systems, the only order conditions which have to be satisfied, in 
addition to the classical ODE-conditions, are 

T -1 
be. cV = 1 , j = 

15 , .. q , 

where q = kG- 1 if Irl < 1, or q = kG if Irl= 1. The Cash method M3 
solves problem P2 with a higher than expected order for similar reasons. The 
elementary differentials causing the method to be reduced to an order-2 method 
are not present in this problem. 

For the rest of the problems, there is agreement between the observed and 
predicted local order. There is also agreement between the observed and pre- 
dicted global order, with one exception, the Kuntzmann-Butcher method M9. In 

T 1 
this case, the stability constant r = 1 - b I = - 1 . The contribution to the 

global error from the local error of two adjacent steps is dn+1 + rdn = 6(hkL+l ), 
that is, the local errors from two adjacent steps cancel each other. See [2] for 
a better explanation of this phenomenon. M9 is also the only method where 
the order predicted by Burrage and Petzold is better than the order predicted 
by our theory. 

5. DISCUSSION 

In this paper we have derived a set of necessary and sufficient order conditions 
for the local truncation error when a Runge-Kutta method is applied to a fully 
implicit differential-algebraic equation of index-i. The numerical experiments, 
described in ?4, confirm our results. 

In Appendix B, the results given in this paper are compared with the re- 
sults given by Burrage and Petzold [2, 13]. We observe that there is no con- 
flict between the two theories. Let Q(x) be a permutation matrix, ensuring 
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g, to be nonsingular. The algebraic part of the equation is g(v) = 0, and 
V = QlI(X)[yT, ZTIT. The order conditions derived in ?2 are only valid if 
Q(x) does not change over the step. The theory of Petzold does not have this 
restriction. 

If Q(x) does not vary too frequently, it is possible to use embedding for 
the control of the local error. In practice, one should be careful when choosing 
a method for solving general classes of index-i equations. Some methods will 
attain a higher order for some classes of equations, like semiexplicit equations 
and linear constant-coefficient equations. This is observed in ?4, Table 4.1. 
For the linear constant-coefficient problem, the two variables were solved with 
different accuracy. For the methods with r = 0, vI was solved with order kd , 
while v2 was solved exactly. When choosing a method for solving DAE's, such 
aspects have to be considered. 
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APPENDIX A. TEST PROBLEMS 

P1: Linear constant-coefficient problem. 

[1 2]V +1 2]V [ 0 

with x E [0, 1] and initial values 

v(0)= [0] and v'(0) 

The exact solution is 

vI(x)=e X-2sinx, v2(x)=sinx. 

The local order was derived at x = 0.5. 

P2: Linear problem with time-dependent coefficients. 

(X + 1)v' + (X + 1)v + XV - 0.5v2 = e xX 
2 2 ~~~12 2 22 

(X2 _ .2)Vl + (X2 _ .2)V (X2 
2 

1. _xe- + (X2 - 2o (-1.3 )1+(x-0.3 )V2( -1.3 )xeX+x 0.3 )V7+IT 
with x E [0, 1] and initial values 

v(0) = [1] and v'(0) [jj- 

The exact solution is 

vI (x) =xeX, v2(x) =V . 

The local order was derived at x = 0.28. 
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P3: Nonlinear problem, linear in v'. 

v +V V - (v2 + 1)V3 = -VI + 1 + sinx, 

(v3+1)v,+v v/=-e -x 

0 = vlv2v3 - 0.5e x sin(2x) 

with x E [0, 1] and initial values 

v(0)= [01 and v'(0) [1l1 

The exact solution is 

vI(x) = ex , v2(x)= sinx, V3(X) =COSx. 

The local order was derived at x = 0.5. 

P4: Problem nonlinear in v'. 

(sin2 v + cos2v2)(v)2 - (x - 6)2(x - 2)2viex = 0 
3 2 -x 

(4 - x)(v2 +VI) -64x e v-v2 = 0 

with x E [0.5, 1]. The exact solution is 

v x4e-x V x3e-x 4 - X) 

The local order was derived at x = 0.75. 

APPENDIX B. COMPARISON BETWEEN OUR RESULTS 
AND THE ORDER RESULTS GIVEN BY PETZOLD 

Here we want to explain why there is no contradiction between the order 
results given by Petzold et al. [2, 13] and the results given in this paper. In 
fact, we can prove that kG> kp, kp is the order predicted by Petzold in the 
theorem cited below, for all methods with r 54 -1 . The following relations are 
defined in [2]: 

S 

i,j=I 

B(w): Zbic>- , p= 1, ... ., w, 

S 1 

C(w): Z 1aijcl 1=i 1 . p . 

j=1 1 

Theorem 1 in [2] is as follows. 
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Theorem 1. Suppose that (1. 1) is uniform index 1 and linear in v', the Runge- 
Kutta method satisfies the stability condition Irl < 1, the errors in the initial 
conditions are 6(h kP), and the errors in terminating the Newton iterations are 
6(hkP+3) where 3 = 1 if Irl = 1 and 3 = 0 otherwise, and kp > 2. Then the 

global errors satisfy II en II = 6 (hkP), where 

q if C(q) and B(q), 

kp = q+ 1 if C(q) , B(q + 1) , and - 1 < r <1, 

q + 1 if C(q), B(q+ 1), A(q+ 1), and r= 1. 

This, together with the following lemma and Theorem 3.3 or Theorem 3.4 
shows that kG > kp, for all methods with r -1 . 

Lemma B.1. If C(q), B(q), then 

@D(t) = 
1 

Vt E DA1TY, P(t) < q. 

If C(q), B(q + 1), then 

o~t) 1 | Vt E 15A1Ty YYp(t) < q + 1, 

y(t) Vt E DA1TY, p(t) < q. 

If C(q), B(q+ 1), A(q+1),then 

1 
1D(t) =- Vt E DA1T p(t) < q + 1. 

Proof. In the following, we use the notation i E DA 1 TY for the bushy trees, 
that is, the trees where all the vertices are directly connected to the root. For 
such trees we have 

(B. 1) I~t = p(i)ci 
I 

i = 1, ...,5 s. 

Also, zY is a bushy tree. Similarly, we use the notation ui for trees composed 
by only bushy trees, that is, 

ui = [il, *-, kz. 

Now from (2.34) and (B. 1) we have 
S S 

ki(f) = 
Edij E p(tiajn~cnl nl iank nk 

j=1 nI,-, nk-= 

If C(q), where q + 1 > p(ui), this equation can be written as 
S S 

(B.2) ki(ft) = Edi. P(t') c... = d.cEdijP(), 
j=1 j=1 

where the fact has been used that p(ui) = p(it) + + p(ik) . If q > p(uz), then 

(B.3) kit) = p(i )cI 



624 ANNE KVAERN0 

Now let t = [1, * * * t, *, flly E DA1TYY. Then, from (2.33) and (B.3), 
we have 

S 

(t) = p(t) P(j)ain Cn * p(ik)ain cPnk ClIc*h(u i 

n, , .. , nk = I 

If C(q), where q + 1 > p(t), then 

(B.4) 1 (t) p(t)cP(1) cP(k)C c1P( )) = p(t)c7 (t, 

since p(t) = p(i1)+? -+p(ik) + p(l()+i * *+ p( 'UI) -+1. By repeated use of (B.2) 
and (B.4) we know that if C(q), then for all t E DA1TYY with p(t) < q + 1 
we have 1i(t) = 1i(i), where t is a bushy tree, and p(t) = p(t) . Inserting this 
into (2.31), we have 

S S 

Y1(t) = Eb11(t) = p(t)Ebjc7P(t)1 t e DA1Tyy, p(t) < q + 1. 
i=l i=l 

Similarly, for all t E DA1Tyz, p(t) < q + 1, there exists a ui such that 1i(t) = 

ki (f) and p(t) = p(i) . From (B.2), (B.3), and (2.31) we have 
,s S 

y1(t) = Ebiki(i) = EbdCP Vt E DA1TYz, p(t) < q + 1, 
i=l i=l 

and 
S 

Y1 (t) = pMEbp(t)Zc((> Vt E DA1TYY, p(t) < q + 1. 
i=1 

If C(q), all the order conditions up to order q + 1 are reduced to A(q + 1) 
and B(q + 1). Thus, the lemma is proved. o 
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